

Forecasting wind energy

GE Energy Consulting Group March 30, 2016

Imagination at work

Gene Hinkle Manager Director, Power Economics GE Energy Consulting Group gene.hinkle@ge.com 518-385-5447

GE's integration of renewables experience

Studies commissioned by utilities, commissions, ISOs...

- Examine feasibility of 100+ GW of new renewables
- Consider operability, costs, emissions, transmission

3 GW Wind 10% Peak Load 4% Energy

2005 Ontario 15 GW Wind 50% Peak Load 30% Energy

2006 California 13 GW Wind 3 GW Solar 26% Peak Load 15% Energy

2007 Texas 15 GW Wind 25% Peak Load 17% Energy

2009 Western U.S. 72 GW Wind 15 GW Solar 50% Peak Load 27% Energy

2010 New England

12 GW Wind 39% Peak Load 24% Energy

2012 Nova Scotia

~1500MW Wind 40% Energy

2013 PJM 96GW Wind 22GW Solar 30% Energy

8 GW Wind 4.5 GW Solar 50% Eneray

Underway Pan-Canadian

> ~72GW Wind 30% Energy

GLOBAL RENEWABLE INTEGRATION STUDIES

Barbados Wind & Solar Integration Study (2015)

Vietnam Wind Grid Code Development and Renewable Integration Study (2014)

 REserviceS Project Economic Grid Support from Variable Renewables (Europe)

GE Proprietary Information

Introducing Variability & Uncertainty

Uncertainty

- Wind generation are not always available when called upon
- Are not dispatchable ... output is predicted by a **forecast**
 - Actual power output is different than forecast output

Variability

- Wind and solar generation vary as the intensity of their energy sources
- Several timescales ... minute (regulation), hour (ramping), daily, seasonal

A perfect forecast eliminates uncertainty, but there is still variability

For grid operations, wind is "similar" to load

- Like load, wind can be forecasted accurately for planning purposes
- Grid operators can plan day-ahead (or shorter) operations based on a load forecast and a wind generation forecast
- Dispatchable generation is allocated to serve the net of the forecast load minus the forecast wind
- Uncertainty in the wind forecast adds to the uncertainty in the load forecast
- Adjustments are made using hourahead forecasts and real-time data
- Dispatchable Generation Serves "Net Load"

Dealing with Uncertainty

- Basic options are to increase reserves, demand response, curtail, rely on neighbors, storage
- Increasing reserves
 - Commit additional generation so that load will never be interrupted
 - Need to do it 100% of the time, because you do not know when the reserves will be required
 - Potential to increase system cost, additional capacity online may not be needed and runs the system less efficiently
- Demand response
 - Interrupt or reduce load occasionally, as need arises
 - A paid ancillary service
- Curtail when under forecasted

Forecasting can Help to Reduce Uncertainty

Forecasting increases economic value of renewable power

Wide-spread extreme events are predictable (e.g. widely publicized Texas events were predicted)

Texas February 24, 2007 event

Extreme Thirty-Minute Wind Drops

Timing is Everything

Conceptual Timeline for Day-Ahead Unit Commitment

Start Times (warm): http://www.nrel.gov/docs/fy12osti/55433.pdf

Timing is Everything

Conceptual Timeline for Day-Ahead Unit Commitment

Start Times (warm): http://www.nrel.gov/docs/fy12osti/55433.pdf

Short-Term Forecasting

PJM Renewable Integration Study

Using a 4-Hour forecast resulted in a \$70M reduction in production cost.

The reduction was a result of an improved commitment, shifting from CT to CC's.

Improved SOA Wind Forecast

Conclusions

• The forecast schedule used depends on the system...

- Isolated or Interconnected
- Flexible generation or inflexible base load generation
- Hydro availability and flexibility (environmental constraints)
- Forecasting improvements result in operating cost savings to the utility. These savings increase with increased wind penetration and increased forecast accuracy.
 - The savings is not proportional to the penetration level of wind energy
 - Diminishing returns with increased penetration
- A more accurate forecast, in general, can reduce operating reserve carried by a system for uncertainty
- Forecasting improvements reduce wind curtailment and reduce reserve shortfalls, increasing the efficiency of power system operations
- Other changes in operating practices are also needed to improve operating cost savings

Key lessons learned ...

All power grids can accommodate substantial levels of wind and solar power... There is never a hard limit

Enablers

- Renewable forecasting
- Flexible thermal fleet
- Faster quick starts
- Deeper turn-down
- Faster ramps
- More spatial diversity of wind/solar
- Grid-friendly wind and solar
- Demand response ancillary services
- Energy storage and electric vehicles
- Markets & Grid Codes

Impediments

- Lack of transmission
- Lack of control area cooperation
- Market rules / contracts constraints
- Unobservable & uncontrollable DG "behind the fence"
- Inflexible operation strategies during light load & high risk periods
- Markets & Grid Codes

Variability and Uncertainty... Layperson's terms

For Example...

Generator Owner... "I can guarantee 1000MW of hydro all day tomorrow." System Operator... "OK, I will turn off 1000MW of other generation. Variability:

Generator Owner..."I can guarantee 1000MW of hydro from 2PM to 4PM tomorrow."

System Operator... "OK, I may turn down 1000MW of other generation, rather then shutting it off."

Uncertainty:

Generator Owner... "I think I will have 1000MW of hydro sometime tomorrow."

System Operator... "OK, I may turn off only 600MW of other generation and I will keep 400MW spinning and have quick start capacity ready to fire."

