Retooling for Wind – Onshore to Offshore -- SECWC March 8-9, 2012

GIWN

Patrick Fullenkamp – Director, Technical Services pfullenkamp@glwn.org

Agenda Manufacturing Workshop

- 1:30 Offshore/Onshore Wind Business Opportunities for Manufacturers in Southeast Region and Global Trends Driving Market Demand for Key Components – Patrick Fullenkamp, GLWN
- 2:15 Gamesa Offshore Wind Turbine Project Dan Renshaw

March 9, 8:30 – 10:00

- 8:30 Offshore/Onshore Wind Supply Chain Structure, How to get engaged – Ed Weston, GLWN
- 9:15 Round Table Discussions: "What are manufacturers needs and concerns to prepare for this new Offshore Business?
 - Wind Turbine OEM Gamesa, Dan Renshaw
 - Offshore Developer APEX Offshore Wind, Tim Ryan
 - Engineering SAIC, Neil Rondorf
 - Vessels Stevens Towing, Benjamin Smith
 - Electrical Infrastructure ABB, Tom Weinandy at Baldor Industry
 - Heavy Fabrication

Topics to be covered

- Onshore
 - History
 - Update on What's Happening Now
 - Description of Forces and Major Players
- Offshore
 - OEM and Manufacturing Drivers Offshore vs Onshore
 - Opportunities: Ports, Foundations, Vessels, Turbines
 - USA Offshore Project Summary
 - SE Region Offshore Projects
 - How to maximize US SE Regional Supply Chain

GLWN.....Call us Global

- Membership-based, Non-Profit
- International Supply Chain Advisory Group
- 1600 companies across 35 States + Canada
- Supplier Headhunters for the Wind Industry
- *Resource* for Suppliers and Service Providers
- Mission:

-Localize New Business Opportunities -Increase the Domestic Content of North America's Wind Turbines

Wind Turbines: An American Invention

GLWN.00

Charles BrushCleveland, OH12 Kilowatts1888

NASA Oahu, HI 3.2 Megawatts 1980

People Want Windpower

US and China Lead World

New Installed Capacity (2011)

	MW	%
China	18,000	43.6
USA	6,810	16.5
India	3,019	7.3
Germany	2,086	5.0
UK	1,293	3.1
Canada	1,267	3.1
Spain	1,050	2.5
Italy	950	2.3
France	830	2.0
Sweden	763	1.9
Rest of the World	5,168	12.5
World Total	41,236	100

GLWN.50

Cumulative Capacity (2011)

	MW	%
China	62,733	26.3
USA	46,919	19.7
Germany	29,060	12.2
Spain	21,674	9.1
India	16,084	6.7
France	6,800	2.9
Italy	6,747	2.8
UK	6,540	2.7
Canada	5,265	2.2
Portugal	4,083	1.7
Rest of the World	32,446	13.6
World Total	238,351	100.0

How much is 6.81 Gigawatts?

- 6,810 MW or 6,810,000 kW 1.8 million homes
- OE Parts for 3,680 Turbines **\$4,750,000,000**
 - New Towers
 - Gears, Shafts
 - Fabricated Frames
 - Roll-threaded studs
- **Balance of Plant**
 - Cubic Yds Concrete
 - Pounds of Rebar

- 1,287,000,000 S
- 257,000,000 \$
- \$ 44,000,000
- \$ 37,000,000
 - 1,080,000 204,000,000

U.S. 20% Wind Scenario

Domestic Content of America's Turbines

2005

2009 / 2010

~25% domestic components ~2,500 MW installed

GLWN.50

~50% domestic components ~10,000 / 5,000 MW installed

State Renewable Energy Standards

Turbines, Towers, and Blades

NA Mfgs Operating Today

Wind Turbine OEMs

- General Electric
- Gamesa
- Clipper Windpower
- Acciona
- DeWind
- Nordic Windpower

GLWN 50

- Northern Power
- Vestas

Nordex

Aeronautica Windpower

© Copyright 2012 GLWN™ A WIRE-Net Initiative

What's Exciting? New Assembly Plants

Siemens

Kansas, 600 turbines/yr

Nordex

- Arkansas, 300 turbines/yr
- Vestas
 - Colorado, 1,400 turbines/yr
 - Aeronautica Windpower

GLWN.bo

New Hampshire

WTG OEMs on the Way

- Alstom : Amarillo, TX
- Mitsubishi: Ft. Smith, AR
- Fuhrlander (Germany)
- Kenersys (Germany)
- M. Torres (Spain)
- REpower (Germany)
- Areva (Germany)
- Hyundai (Korea)
- Sinovel (China)
- Goldwind (China)
 - Mingyang (China)

GIWNE

Towers Facilities

- Trinity Structural Towers (Clinton IL; Tulsa, OK)
- SIAG Aerisyn (Chattanooga, TN)
- Ventower (Monroe, MI)
- Thomas & Betts (Memphis, TN)
- Tower Tech (Manitowoc, WI, Abilene, TX)
- Katana Summit (Columbus, NE)
- DMI (West Fargo, ND; Tulsa, OK, Ft. Erie, ON)
- Dragon Wind (Lamar, CO)
- Vestas (Windsor, CO)
- SMI & Hydraulics (Porter, MN)
- Ameron (Rancho Cucamonga, CA)
- Ventower (Monroe, MI)

Blades Operations

- Suzion (Pipestone, MN)
- LM Windpower (Grand Forks, ND; Little Rock, AR)
- Siemens (Fort Madison, IA)
- Gamesa (Ebensburg, PA)
- Molded Fiberglass (Gainesville, TX, Aberdeen, SD)
- TPI Composites (Newton, IA)
- Vestas (Brighton, CO)
- Nordex (Jonesboro, AR)
- Energy Composites Corp (Wisconsin Rapids, WI)

GLWN.50

Gearbox OEMs

- Winergy Drive Systems (Elgin, IL)
- GE Transportation (Erie, PA)
- Clipper Windpower (Cedar Rapids, IA)
- Z-F (Gainesville, GA)

- Brevini (Muncie, IN)
- Moventas (Faribault, MN)
- Bosch-Rexroth (TBD)

Driving Forces in Wind

Off-Shore Wind DOE Strategy

DOE Offshore Wind Innovation and Demonstration (OSWind) Program:

•Off-shore Projected Cost: Must be cut by 50% •Strategies:

•Technology Development: Applied Research to Reduce Inputs
•Reduce Wind Deployment Timeline: Thru Resource Planning, etc.
•Advanced Technology Demonstration: \$90M Fed Funds Allocated

USDOE National Offshore Wind Strategy, February 2011

Coastal vs. Inland State Electricity Pricing

Offshore Section Topics

- European Ports
- European Foundations
- European Vessels
- USA Math to 54 GW and Wind Potential
- USA Offshore Project Summary
- SE Region Wind Potential

Europe Offshore Wind Cumulative

MW

Offshore Goals

- ◆ Europe 55 GW by 2020, 3.2 GW in 2011
- ◆ Europe 150 GW by 2030
- ◆ USA 54 GW by 2030

GIWN

Onshore vs Offshore CAPEX

"Typical" Onshore versus Offshore Wind Capital Cost Breakdown (EUR)

Source: MAKE Consulting

Wind Turbine Size

GLWN.bo

Courtesy - AWEA

Key European Ports

- U.K. Harwich International Port and Ramsgate
- Netherlands Vlissingen
- Germany Bremerhaven and Cuxhaven
- France Dunkirk

General rule 100 – 150 WT Units/yr/ Port

Cuxhaven Germany Offshore 2010 Laydown Area

GLWN.bio

Cuxhaven Germany Lay Down Yard 2011 and Port Vessel Loading

Towers (Dia. 6-7m, L 30-40m 150 ton / section)

200M € Initial Investment

350M € Future Investment

4,500 jobs in 5 yrs

GLWN.bo

~150 units/yr

Germany 25 GW Offshore by 2030 Footprint Example for USA Port

- 3 to 4 Offshore Wind Energy Ports in North Sea (service 200 sea mile radius from port)
- 300 Wind Turbines Annually in North Sea Projects
- 100-150 complete units (foundation structures, towers, nacelles, hubs, and rotor blades) a year via the Offshore Terminal Bremerhaven (OTB)
 - Bremerhaven has 200 hectares for further manufacturing and supplier production facilities
- OTB (Offshore Terminal Bremerhaven) Technical Data
 - PURPOSE Handling, pre-assembly and storage of offshore wind turbines; exporting of components; logistics centre for the transportation / transshipment of large industrial components
 - OPERATING TIME -24 hours a day, 365 days a year
 - TARGET UP to 160 wind turbines and foundation structures of wind farms per season
 - QUAY LENGTH 500m
 - NAVIGABLE DEPTH 14.5m
 - HEAVY DUTY SLAB AT THE QUAY 70m wide, 500m in Length
 - TERMINAL DEPTH 498m
 - AREA approx 25 hectares (2.48 acres or 1.86 football fields per hectare)
 - CAPACITY 160 units per season

OTB-Offshore Terminal Bremerhaven

- Primary Port for Alpha Ventus Wind Farm
- AREVA & REpower Turbine Assembly 100 units per year
- WesserWind GmbH Foundations
- Power Blades GmbH- Blades
- Plus 200 hectares for other manufacturers and suppliers

Offshore Foundation Types

• Monopile 300 – 500 t

GLWN.bo

- •Gravity Base 6000 t
- Jackets 550 t
- Tripods 950 t
- Tripiles 490 t
- Floaters 1000 t
 - Upright
 - Spar

3X

Mass 1X

4X

WesserWind GmbH Tripods & Jackets

GLWN.S

L/W/H up to 32/32/60 m 950 ton

© Copyright 2012 GLWN™ A WIRE-Net Initiative

CSC Cuxhaven Steel Construction

GLWN.00

Offshore Gravity Test Foundation

Side load cyclic testing on tower above

Base testing in standing water right

GLWN.00

40m x 40m legs x 8m ht – 1m wall Thickness 65m tower height 6000 t with base & tower 900 wheel transport unit – plant to dock loading area

Gravity Foundation

GLWN.50

Source: Strabag Images

U-shaped Transport Vessel – 160m long x 65m wide

A WIRE-Net Initiative

Offshore Assembly

GLWN.Do

Source: Nordex SE

Vessels

GLWN .5

Transport Vessels – Foundations, Towers, Blades, Nacelle

Installation Vessels:

Jack-up or Regular

- 5000 ton, 2000 ton payload
- 93m L, 36m W, 7m D

Crew Transport Vessels

670 Vessels Worldwide, 32 crossover to Wind (ODS Pertrodata)

- -10 Turbine Installation (4 in O&G)
- -12 Foundation Install. (5 in O&G)
- 10 Turbine and Foundation

Installation with no cross-over

© Copyright 2012 GLWN™ A WIRE-Net Initiative

Offshore Assembly

Size effects for scale up from 2 to 5 MW:

- Wind turbine dimensions 150%
- Foundation weights up to 400%

New installation sites:

- Water depth increase 300%
- From sand to inhomogeneous, layered soil

Wind Farm Construction Offshore

Wind Turbines

GLWN.bo

- Foundations Monopile, Tripile, Floating
- Vessels Transport, Assembly, Crew Transport
- Electrical Infrastructure Cable, Transformers-Substations

5 MW Blade Production Germany

GLWN.5

5 MW Turbine Blade

56.5 m length 16 ton 4800 kg resin ~\$25 / kg resin Lightning Protection

1 Blade per day 80 people

Simple Math: All 5MW Units-54 GW

- ◆ 10,000 MW by 2020
 - 2,500 MW / Yr 2017 2020
 - 500 5 MW units / Yr
 - 3+ Ports @150 WT / Port
- ◆ 44,000 MW by 2030
 - 4,400 MW / Yr 2021 2030
 - 880 5 MW units / Yr
 - 6 Ports @150 WT / Port

Off-Shore Wind Potential

Region	0–30 m depth	30–60 m depth	>60 m depth	Total
New England	100.2	136.2	250.4	486.8
Mid-Atlantic	298.1	179.1	92.5	569.7
South Atlantic Bight	134.1	48.8	7.7	190.7
California	4.4	10.5	573	587.8
Pacific Northwest	15.1	21.3	305.3	341.7
Great Lakes	176.7	106.4	459.4	742.5
Gulf of Mexico	340.3	120.1	133.3	593.7
Hawaii	2.3	5.5	629.6	637.4
Total	1,071.2 GW	628.0 GW	2,451.1 GW	4,150.3 GW

Mid-Atlantic States

USDOE National Offshore Wind Strategy, February 2011

GLWN.5

Offshore Wind Resource & Farms

Off-Shore Wind - Status

•Currently 45+ Active Wind Farms:

•Denmark, Belgium, China, Sweden, Finland, Germany, UK, the Netherlands, Norway, and Ireland

- •US projects under development (26+ Active) partial list:
 - •Cape Wind (420MW) Mass. Nantucket Sound
 - •Garden State Offshore Energy (345MW) Atlantic City
 - •Delaware Wind Project (450 MW) Delaware Coast
 - •Block Island Wind Farm (29 MW) Rhode Island Coast

•APEX Offshore Wind Virginia (1500 MW)

•Gamesa Chesapeake Test Site (5MW)

Hampton Roads Demonstration Project Virginia (15 MW)
APEX Offshore Wind North Carolina (1900 MW)

Offshore Wind Supply Chain Opportunities for SE Region

DOE Goal 54 GW by 2030 = 10,800 Units if all are 5 MW

- Logistic & Port Infrastructure Impact
- Foundations fabrication-machining-coatings
- Towers fabrication-forging-machining-coatings
- Blades composites-processing-machining
- Support Bases and Hubs casting/fabrication-machiningcoatings
- Vessels fabrication-casting-forging-machiningelectrical-hydraulics-coatings
- Cable & Substation all major manufacturing sectors

What should states be working on together - optimizing supply chain?

- ♦ Goal → Lowest Cost Of Energy
- Utilizing & Share most efficient existing resources
 - Ports
 - Shipyard vessel manufacture
 - Large Tower and Monopile Manufacture
 - Foundation Manufacture
- Best Laydown Areas to serve Multiple Wind Farms
- Manufacturing Parks for Foundations, Towers, Blades
 and Nacelle Assembly Port Brownfield sites

THANK YOU!

GLWN.bo

Patrick Fullenkamp – Director, Technical Services, GLWN pfullenkamp@glwn.org 1.216.920.1956

